

Capteurs sans batterie ou le mythe de l'autonomie infinie

Comment la variabilité et le vieillissement des composants impacte l'exécution de programmes ?

Hugo Reymond - Equipe PACAP Greendays 2025

GAPTEURS SANS BATTERIE

Capteurs sans fil

Capteurs sans fil

Collecte de données, traitement et envoi des données

Capteurs sans fil

- Collecte de données, traitement et envoi des données
- Déploiement dans des lieux souvent isolés ou inaccessibles

Capteurs sans fil

- Collecte de données, traitement et envoi des données
- Déploiement dans des lieux souvent isolés ou inaccessibles

Autonomie des capteurs sans fil

Capteurs sans fil

- Collecte de données, traitement et envoi des données
- Déploiement dans des lieux souvent isolés ou inaccessibles

Autonomie des capteurs sans fil

Capteurs sans fil

- Collecte de données, traitement et envoi des données
- Déploiement dans des lieux souvent isolés ou inaccessibles

Autonomie des capteurs sans fil

- Autonomie limitée, remplacement fréquent
- Beaucoup de déchets

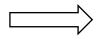
Capteurs sans fil

- Collecte de données, traitement et envoi des données
- Déploiement dans des lieux souvent isolés ou inaccessibles

Autonomie des capteurs sans fil

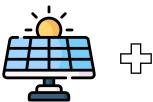
- Autonomie limitée, remplacement fréquent
- Beaucoup de déchets

Récolte d'énergie


Capteurs sans fil

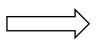
- Collecte de données, traitement et envoi des données
- Déploiement dans des lieux souvent isolés ou inaccessibles

Autonomie des capteurs sans fil



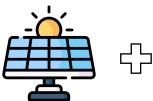
- Autonomie limitée, remplacement fréquent
- Beaucoup de déchets

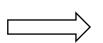
Récolte d'énergie


Capteurs sans fil

- Collecte de données, traitement et envoi des données
- Déploiement dans des lieux souvent isolés ou inaccessibles

Autonomie des capteurs sans fil




- Autonomie limitée, remplacement fréquent
- Beaucoup de déchets

Récolte d'énergie

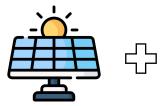
- Autonomie "infinie"
- Empreinte écologique réduite

Capteurs sans fil

- Collecte de données, traitement et envoi des données
- Déploiement dans des lieux souvent isolés ou inaccessibles

Autonomie des capteurs sans fil

Piles et batteries



- Autonomie limitée, remplacement fréquent
- Beaucoup de déchets

Récolte d'énergie

- Autonomie "infinie"
- Empreinte écologique réduite

Comment cette autonomie "infinie" se confronte aux réalités matérielles ?

Variabilité des composants

Les caractéristiques des composants varient selon :

- Vieillissement des matériaux (5)

Exemple: Condensateur

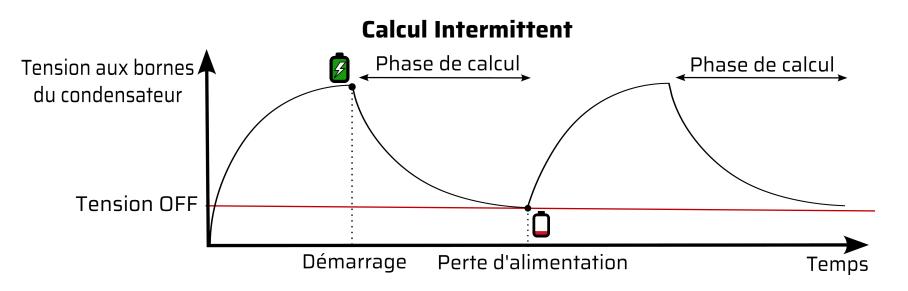
Variabilité des composants

Les caractéristiques des composants varient selon :

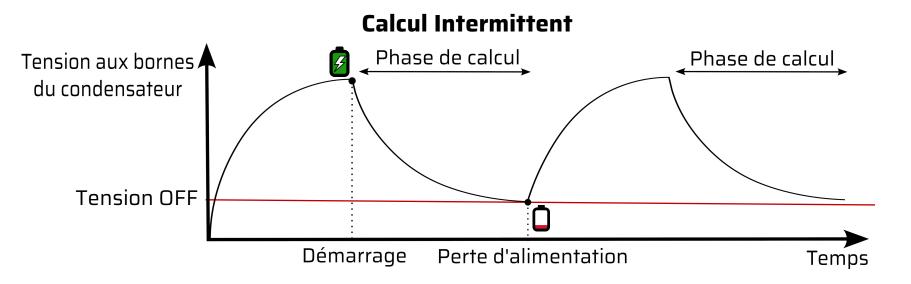
- Conditions d'opérations 🌡 🔕
- Vieillissement des matériaux (5)

Exemple: Condensateur

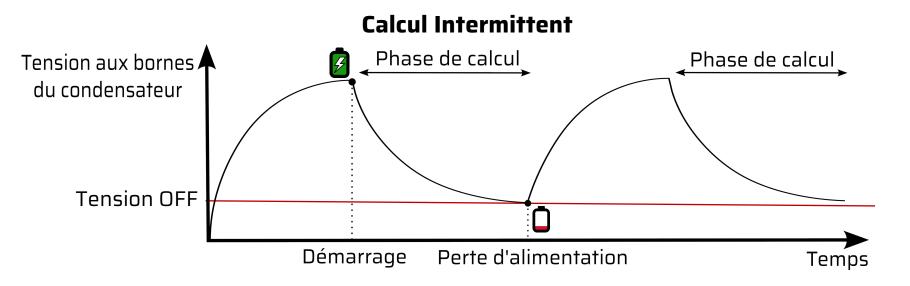
Vieillissement Capacité réduite, Résistance série (ESR) augmentée


Quel est l'impact de cette variabilité sur l'exécution d'un programme ?

Absence de batteries 🖧 Faible énergie récoltée 🚞 Calcul en continu impossible

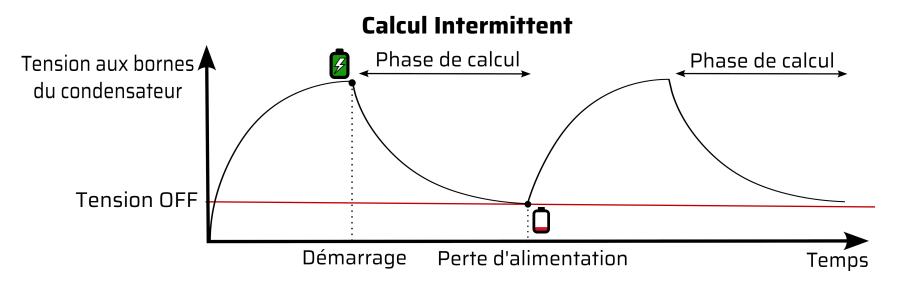


Absence de batteries 🖧 Faible énergie récoltée 🚞 Calcul en continu impossible


Absence de batteries 🖧 Faible énergie récoltée 🚞 Calcul en continu impossible

Perte d'alimentation

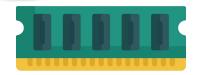
Absence de batteries 🖧 Faible énergie récoltée 🚞 Calcul en continu impossible



Perte d'alimentation \Longrightarrow

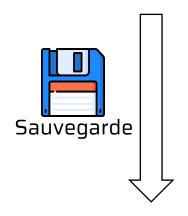
Perte des données volatiles (mémoire et registres)

Absence de batteries 🖒 Faible énergie récoltée 💳 Calcul en continu impossible

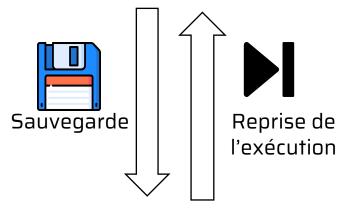

Perte d'alimentation

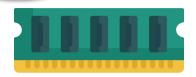
Perte des données volatiles (mémoire et registres)

Progression perdue

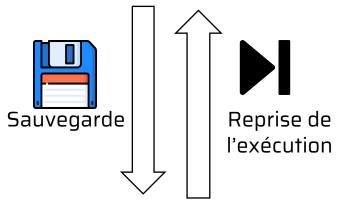

VM: Mémoire volatile

VM: Mémoire volatile

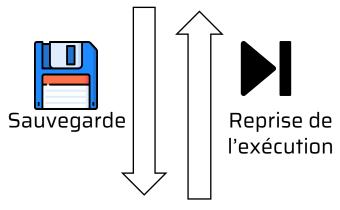




VM: Mémoire volatile



VM: Mémoire volatile




```
int sum = 0;
for(int i = 0; i<4; i++){
    sum += array[i]
send(sum);
```


VM: Mémoire volatile


```
int sum = 0;
for(int i = 0; i<4; i++){
    checkpoint();
    sum += array[i]
checkpoint();
send(sum);
checkpoint();
```


Placement de point de sauvegarde dimensionné par rapport à la taille du condensateur

Placement de point de sauvegarde dimensionné par rapport à la taille du condensateur

```
int sum = 0;
for(int i = 0; i<4; i++){
    checkpoint();
    sum += array[i]
}
checkpoint();
send(sum);
checkpoint();</pre>
```


Placement de point de sauvegarde dimensionné par rapport à la taille du condensateur

```
int sum = 0;
for(int i = 0; i<4; i++){
    checkpoint();
    sum += array[i]
}
checkpoint();
send(sum);
checkpoint();</pre>
```

$$E=rac{1}{2}CV^2$$

Placement de point de sauvegarde dimensionné par rapport à la taille du condensateur

```
int sum = 0;
for(int i = 0; i<4; i++){
    checkpoint();
    sum += array[i]
}
checkpoint();
send(sum);
checkpoint();</pre>
```

$$E=rac{1}{2}CV^2$$

Si la capacité diminue, il devient impossible d'atteindre le prochain point de sauvegarde

Réexécution à l'infini : PLUS DE PROGRÈS

Placement de point de sauvegarde dimensionné par rapport à la taille du condensateur

```
int sum = 0;
for(int i = 0; i<4; i++){
    checkpoint();
    sum += array[i]
}
checkpoint();
send(sum);
checkpoint();</pre>
```

$$E=rac{1}{2}CV^2$$

Si la capacité diminue, il devient impossible d'atteindre le prochain point de sauvegarde

Réexécution à l'infini : PLUS DE PROGRÈS

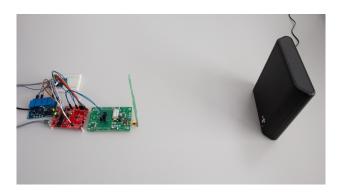
L'observe-t-on expérimentalement?

Matériel

Noir : Source d'énergie (Émetteur RF)

Vert : Récolte d'énergie (P2110 RF harvester)

Rouge: Cible (Microcontrôleur MSP430FR5969)



Matériel

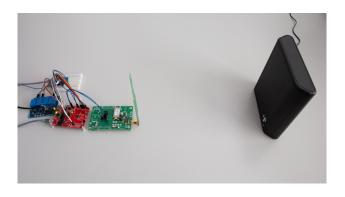
Noir : Source d'énergie (Émetteur RF)

Vert : Récolte d'énergie (P2110 RF harvester)

Rouge: Cible (Microcontrôleur MSP430FR5969)

Logiciel

- Trois benchmarks (aes, crc, rc4)
- Placement de point de sauvegarde statique conservatif



Matériel

Noir : Source d'énergie (Émetteur RF)

Vert : Récolte d'énergie (P2110 RF harvester)

Rouge: Cible (Microcontrôleur MSP430FR5969)

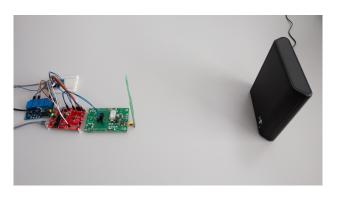
Logiciel

- Trois benchmarks (aes, crc, rc4)
- Placement de point de sauvegarde statique conservatif

Réserve d'énergie

Capacité (en µF)	105	75	42	22
Dégradation	0%	29%	60%	80%

On ne simule pas la dégradation de l'ESR



Matériel

Noir : Source d'énergie (Émetteur RF)

Vert : Récolte d'énergie (P2110 RF harvester)

Rouge: Cible (Microcontrôleur MSP430FR5969)

Logiciel

- Trois benchmarks (aes, crc, rc4)
- Placement de point de sauvegarde statique conservatif

Réserve d'énergie

Capacité (en µF)	105	75	42	22
Dégradation	0%	29%	60%	80%

On ne simule pas la dégradation de l'ESR

Protocole

- La puissance récoltée ne permet pas d'alimenter la cible en continu
- La cible exécute un programme en boucle pendant 1 min
- On compte le nombre de programmes exécutés pendant les 1 min

Progression des calculs

	Benchmarks exécutés (moyenne)		
Capacité(µF)	aes crc rc4		
105	26	61	34
75	30	61	38
42	0	73	7
22	0	0	0

- Si le condensateur est trop dégradé, pas de progrès
 - Aucun benchmark complété

Progression des calculs

	Benchmarks exécutés (moyenne)		
Capacité(µF)	aes crc rc4		
105	26	61	34
75	30	61	38
42	0	73	7
22	0	0	0

	Pourcentage de réexécution		
Capacité(µF)	aes	crc	rc4
105	0%	0%	0%
75	0%	0%	0%
42	96%	0%	95%
22	80%	99%	99%

- Si le condensateur est trop dégradé, pas de progrès
 - Aucun benchmark complété
 - Principalement de la réexécution

Progression des calculs

	Benchmarks exécutés (moyenne)		
Capacité(µF)	aes	crc	rc4
105	26	61	34
75	30	61	38
42	0	73	7
22	0	0	0

	Pourcentage de réexécution			
Capacité(µF)	aes	crc	rc4	
105	0%	0%	0%	
75	0%	0%	0%	
42	96%	0%	95%	
22	80%	99%	99%	

- Si le condensateur est trop dégradé, pas de progrès
 - Aucun benchmark complété
 - Principalement de la réexécution
- En réalité, pas notre principal problème

Progression des calculs

	Benchmarks exécutés (moyenne)		
Capacité(µF)	aes	crc	rc4
105	26	61	34
75	30	61	38
42	0	73	7
22	0	0	0

	Pourcentage de réexécution		
Capacité(µF)	aes	crc	rc4
105	0%	0%	0%
75	0%	0%	0%
42	96%	0%	95%
22	80%	99%	99%

- Si le condensateur est trop dégradé, pas de progrès
 - Aucun benchmark complété
 - Principalement de la réexécution
- En réalité, pas notre principal problème : par moment, on récupèrera suffisament d'énergie pour s'exécuter en continu

Progression des calculs

	Benchmarks exécutés (moyenne)		
Capacité(µF)	aes	crc	rc4
105	26	61	34
75	30	61	38
42	0	73	7
22	0	0	0

	Pourcentage de réexécution		
Capacité(µF)	aes	crc	rc4
105	0%	0%	0%
75	0%	0%	0%
42	96%	0%	95%
22	80%	99%	99%

- Si le condensateur est trop dégradé, pas de progrès
 - Aucun benchmark complété
 - Principalement de la réexécution
- En réalité, pas notre principal problème : par moment, on récupèrera suffisament d'énergie pour s'exécuter en continu
- Problème : la corruption mémoire.

Accès mémoire VM et NVM 🕂 ré-exécution 💳 💛 corruption mémoire

Accès mémoire VM et NVM 🕂 ré-exécution 🖂 corruption mémoire

```
int array[2];
int i = 0;
while(i<2) {
    checkpoint();
    array[i] = 0;
    i++;
}</pre>
```

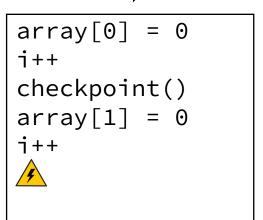

Accès mémoire VM et NVM 🕂 ré-exécution 🖂 corruption mémoire

```
int array[2];
int i = 0;
while(i<2) {
    checkpoint();
    array[i] = 0;
    i++;
}</pre>
```


Accès mémoire VM et NVM 🕆 ré-exécution 🖂 corruption mémoire

```
int array[2];
int i = 0;
while(i<2) {
    checkpoint();
    array[i] = 0;
    i++;
}</pre>
```

Exécution Intermittente


```
array[0] = 0
i++
checkpoint()
array[1] = 0
i++
```


Accès mémoire VM et NVM 🕂 ré-exécution 🖂 corruption mémoire

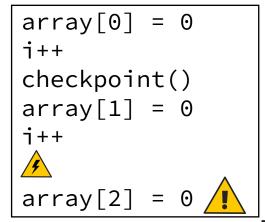
```
int array[2];
int i = 0;
while(i<2) {
    checkpoint();
    array[i] = 0;
    i++;
}</pre>
```

Exécution Intermittente

Accès mémoire VM et NVM 🕂 ré-exécution 🖂 corruption mémoire

```
int array[2];
int i = 0;
while(i<2) {
    checkpoint();
    array[i] = 0;
    i++;
}</pre>
```

Exécution Intermittente array[0] = 0
i++
checkpoint()
array[1] = 0
i++
//
array[2] = 0


Accès out of bound = corruption mémoire

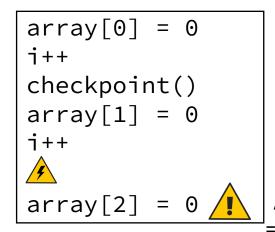
Accès mémoire VM et NVM 🕂 ré-exécution 🖂 corruption mémoire

```
int array[2];
int i = 0;
while(i<2) {
    checkpoint();
    array[i] = 0;
    i++;
}</pre>
```

Exécution Intermittente

Accès out of bound = corruption mémoire

Avec i en NVM


Une seule réexécution peut corrompre tout le système !

Accès mémoire VM et NVM 🕂 ré-exécution 🖂 corruption mémoire

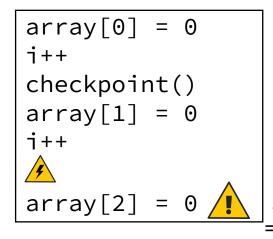
```
int array[2];
int i = 0;
while(i<2) {
    checkpoint();
    array[i] = 0;
    i++;
}</pre>
```

Exécution Intermittente

Accès out of bound = corruption mémoire

Avec i en NVM

Une seule réexécution peut corrompre tout le système !


Certaines approches "pire cas" garantissent l'absence de réexécution en se basant sur la taille du condensateur

Accès mémoire VM et NVM 🕂 ré-exécution 🖂 corruption mémoire

```
int array[2];
int i = 0;
while(i<2) {
    checkpoint();
    array[i] = 0;
    i++;
}</pre>
```

Exécution Intermittente

Accès out of bound = corruption mémoire

Avec i en NVM

Une seule réexécution peut corrompre tout le système !

Certaines approches "pire cas" garantissent l'absence de réexécution en se basant sur la taille du condensateur —————> Sa dégradation casse ces garanties

	Apparition d'une ré-exécution (sur 50 expériences)		
Capacité(µF)	aes	crc	rc4
105	0	0	0
75	0	0	0
42	50	0	50
22	50	50	50

• La dégradation du condensateur entraine des réexécutions

	Apparition d'une ré-exécution (sur 50 expériences)		
Capacité(µF)	aes	crc	rc4
105	0	0	0
75	0	0	0
42	50	0	50
22	50	50	50

- La dégradation du condensateur entraine des réexécutions
- Ces réexécutions peuvent entrainer des anomalies mémoires

	Apparition d'une ré-exécution (sur 50 expériences)		
Capacité(µF)	aes	crc	rc4
105	0	0	0
75	0	0	0
42	50	0	50
22	50	50	50

- La dégradation du condensateur entraine des réexécutions
- Ces réexécutions peuvent entrainer des anomalies mémoires
 - Meilleur cas : Capteur HS
 - Pire cas : Mesures corrompues/érronées, comportements nuisibles

	Apparition d'une ré-exécution (sur 50 expériences)		
Capacité(µF)	aes	crc	rc4
105	0	0	0
75	0	0	0
42	50	0	50
22	50	50	50

- La dégradation du condensateur entraine des réexécutions
- Ces réexécutions peuvent entrainer des anomalies mémoires
 - Meilleur cas : Capteur HS
 - Pire cas : Mesures corrompues/érronées, comportements nuisibles
- Effets dommageables et irréversibles sur le réseau de capteur

Conclusion

- Autonomie "infinie"?
- Fonctionnement des capteurs sans batteries impacté par
 - Conditions opératoires (température, humidité)
 - Vieillissement des composants matériels

Conclusion

- Autonomie "infinie" ?
- Fonctionnement des capteurs sans batteries impacté par
 - Conditions opératoires (température, humidité)
 - Vieillissement des composants matériels
- Dégradation du condensateur Absence de progrès, Anomalies mémoire
- Avec une dégradation de 60%, possibilité d'effets irréversibles
- Nécessité d'intervention manuelle

Conclusion

- Autonomie "infinie" ?
- Fonctionnement des capteurs sans batteries impacté par
 - Conditions opératoires (température, humidité)
 - Vieillissement des composants matériels
- Dégradation du condensateur Absence de progrès, Anomalies mémoire
- Avec une dégradation de 60%, possibilité d'effets irréversibles
- Nécessité d'intervention manuelle

Autonomie menacée par la dégradation des composants

Travaux futurs

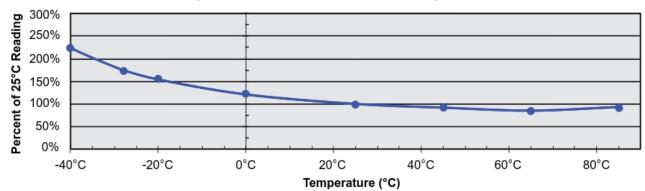
- Comment détecter la dégradation du condensateur ?
- Comment s'adapter aux dégradations du condensateur ?
- Focus : Condensateur
 - Est-ce le composant le plus faillible ?
 - Analyse des autres composants
- Quelle est la durée de vie d'un capteur sans batterie ?

Merci de votre attention Avez-vous des questions ?

This work has received a French government support granted to the Labex CominLabs excellence laboratory and managed by the National Research Agency in the "Investing for the Future" program under reference ANR-10-LABX-07-01

Dégradation du condensateur

- Durée de vie "utile" d'un condensateur conditions standard
 - ≈1 an à 40° (8 000h)
 - ≈3 ans à 25° (25 000h)


Equivalent Series Resistance vs. Temperature

Définition de la durée de vie utile

 Δ C/C: ± 30 %

 $R_1 \le 4$ x spec. limit

 $I_L \le 2$ x spec. limit

Sources:

"196DLC series - Energy Storage Double Layer Capacitors" datasheet, Vishay Components, rev 2018 "SCM series - Series-Connected SuperCapacitor Modules" datasheet, AVX