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25 mars 2025
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Machine Learning requires an ever-increasing amount of compute to train

(Sevilla et al., 2022)

• 10 - 15 % of Google’s energy consumption (Patterson et al., 2022)

• Important emissions from energy consumption : 552 tCO2e to train GPT-3 once and 38

tCO2e for BLOOM (Luccioni et al., 2023)
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Numerous optimisations: how are the impacts of compute evolving?

Exponential increase

in energy efficiency

of compute

Major AI companies claim

decreasing AI footprint

(Patterson et al., 2022)

Impact Shifting Rebound effect +

growth of AI sector

+ Technical and Shift optimisation

Frequent renewal
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Methodology



Gathering information on Graphics cards for Machine Learning

TechPowerUp

GPU database

Wikipedia list of

NVIDIA graphics cards

NVIDIA Workstation graphics cards

between 2013 & 2023

Other sources

(e.g., Google documentation)

specific cards (e.g., Google’s TPU)

• 173 cards models

• 83 cross-validated (47%)

• NVIDIA datasheets when

diverging

• Thermal Design Power (TDP)

• GPU die area and technological node

• memory type and size

• compute power

• release date
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Data on Machine learning training

EpochAI Notable ML systems dataset (Epoch AI, 2024)

Models that have advanced the state of the art, had a large influence in the field’s

history, or had a large impact within the world.1

Required information to estimate the environmental damages of model training:

• training duration

• training hardware

• electricity source

1https://epochai.org/data/notable-ai-models-documentation
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Information on training duration: number of GPU hours

If training duration and number of cards are available

• 131 models (14% of entries)

• GPU hours = training duration ×#cards

• most reliable estimate as it uses information directly from papers presenting models

If Training hardware and number of FLOP during training are available

• 103 other models (∼ 25% of entries in total)

• GPU hours = #FLOPS
peak performance

• linear regression to predict performance ratio when both estimates are available (100

observations)

• predicts ∼ 27% constant performance ratio
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Training hardware characteristics

values consistent with hyper-scaler datacenters

• 2 CPU per server plus:

• NVIDIA workstation cards: 4 graphics cards

• NVIDIA non-workstation cards: 2 graphics cards

• non-NVIDIA cards: manufacturer documentation for the number of cards

• 512 GB memory per workstation server, 192 GB per non-workstation server

• 3 year server duration based on graphics card lifespan (Ostrouchov et al., 2020)

• Information from META: average utilization of 50% (Wu et al., 2022)

increased datacenter efficiency from 2012 to 2018
linear interpolation from average datacenter PUE (∼ 1.75) in 2010 to hyperscaler PUE (1.2)

from 2018 onwards.
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Electricity source and modeling carbon intensity optimisation

Use the carbon intensity of the country of the ML system producer
If multiple countries are involved, all are considered to create a value interval

Modeling strategies for reducing the environmental impact of energy usage

• Aims at accounting for compute location shifting and investment for de-carbonizing

data-center electricity sources

• Continuous reduction of the carbon intensity of up to 25% per year starting in 2019.

Example (Modeled evolution of the carbon intensity of the USA electicity mix:)
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Assessing environmental damages

Using the MLCA tool (Morand et al., 2024)
Bottom-up approach to evaluate hardware production and usage based on hardware

characteristics and information about training process

Assesses:

• Carbon footprint through Global Warming Potential (GWP100, expressed in kgCO2 eq)

• Metalic resource depletion through Abiotic Resource Depletion (ADP, expressed in

kgSb eq)
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Results



Energy efficiency to scale-up compute

Exponential increase in compute efficiency

but slightly increasing total energy consumption

9/16



Increase in the environmental damages of produced graphics cards

Carbon Footprint Metallic resource depletion
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Increase in the environmental damages of graphics cards used

Carbon Footprint Metallic resource depletion
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Large increase in the number of cards to train models
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Exponential increase in the energy consumption of models training
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Exponential increase in the environmental damages of models training

Carbon footprint Metallic resource depletion
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Greener energy cannot void carbon footprint of models training
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Conclusion



Conclusion

Current impact reduction strategies alone cannot curb the growth
in the environmental impacts of AI training.

• Impacts are partly shifting to the production phase

• Increase in the environmental damages of producing graphics cards

• Optimizations have served scaling-up and not scaling down

• Growth paradigm for machine learning models translates into an exponential growth of the

energy consumption and environmental damages of models training

• Need to combine impact reduction strategies with broader reflection on the place and role

of AI in a sustainable society.
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Morand, C., Ligozat, A.-L., & Névéol, A. (2024). MLCA: a tool for Machine Learning Life

Cycle Assessment. 2024 10th International Conference on ICT for Sustainability

(ICT4S), 227–238. https://doi.org/10.1109/ICT4S64576.2024.00031

https://epoch.ai/data/notable-ai-models
http://jmlr.org/papers/v24/23-0069.html
https://doi.org/10.1109/ICT4S64576.2024.00031


References ii

Ostrouchov, G., Maxwell, D., Ashraf, R. A., Engelmann, C., Shankar, M., & Rogers, J. H.

(2020). Gpu lifetimes on titan supercomputer: Survival analysis and reliability. SC20:

International Conference for High Performance Computing, Networking, Storage and

Analysis, 1–14. https://doi.org/10.1109/SC41405.2020.00045

Patterson, D., Gonzalez, J., Hölzle, U., Le, Q., Liang, C., Munguia, L.-M., Rothchild, D.,

So, D. R., Texier, M., & Dean, J. (2022). The carbon footprint of machine learning

training will plateau, then shrink. Computer, 55(7), 18–28.

https://doi.org/10.1109/MC.2022.3148714

Sevilla, J., Heim, L., Ho, A., Besiroglu, T., Hobbhahn, M., & Villalobos, P. (2022). Compute

trends across three eras of machine learning. 2022 International Joint Conference on

Neural Networks (IJCNN), 1–8. https://doi.org/10.1109/IJCNN55064.2022.9891914

https://doi.org/10.1109/SC41405.2020.00045
https://doi.org/10.1109/MC.2022.3148714
https://doi.org/10.1109/IJCNN55064.2022.9891914


References iii

Wu, C., Raghavendra, R., Gupta, U., Acun, B., Ardalani, N., Maeng, K., Chang, G.,

Behram, F. A., Huang, J., Bai, C., Gschwind, M., Gupta, A., Ott, M., Melnikov, A.,

Candido, S., Brooks, D., Chauhan, G., Lee, B., Lee, H. S., . . . Hazelwood, K. M.

(2022). Sustainable AI: environmental implications, challenges and opportunities. In

D. Marculescu, Y. Chi, & C. Wu (Eds.), Proceedings of machine learning and systems

2022, mlsys 2022, santa clara, ca, usa, august 29 - september 1, 2022. mlsys.org.

https://proceedings.mlsys.org/paper/2022/hash/ed3d2c21991e3bef5e069713af9fa6ca-

Abstract.html

https://proceedings.mlsys.org/paper/2022/hash/ed3d2c21991e3bef5e069713af9fa6ca-Abstract.html
https://proceedings.mlsys.org/paper/2022/hash/ed3d2c21991e3bef5e069713af9fa6ca-Abstract.html

	Methodology
	Results
	Conclusion
	Appendix
	References
	References


