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Context and introduction

● Increasing investments and use of machine learning (ML) 

● AI present in most prospective scenarios to achieve carbon neutrality (Bugeau et al., 
2024)

● Many estimations of energy consumption of AI in general and of large ML models  
○ Few estimations of environmental impacts of AI models (Luccioni et al, 2023; Berthelot et al, 2024; 

Morand et al, 2024; Desroches et al, 2025; Morrison et al 2025) and sector

● In this presentation
○ We review large-scale estimations of AI sector
○ We discuss limits of current estimations



Large scale estimations of AI impacts

E-waste challenges of generative artificial 
intelligence (Wang et al, 2024)

cumulative 
2020-2030: 
1.2–5.0 Mt

(vs 53Mt of small 
IT waste)

The Inference Cost Of Search Disruption – 
LLM Cost Analysis (Semianalysis, 2023)

ChatGPT inference: ~3,600 servers
ChatGPT in Google: ~ 513,000 servers 
→ annual electricity consumption of 29.2 TWh

The growing energy footprint of artificial 
intelligence (de Vries, 2023)

3Wh per LLM interaction

nvidia sales: in 2027, AI ≈ ⅔ of present data 
center electricity use
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Different perimeters

INFERENCE Acquisition, processing, 
storage of DATA

TRAINING

Data transfer

Datacenters 
(storage and compute 
servers) Computers 

for 
developers

Data acquisition terminals:
smartphones,  sensors, IoT 
…

Datacenters 

Computers 
for 

developers

Datacenters 

Terminals: 
computers, smartphones,  
robots, IoT …

IT infrastructure: terminals, networks, datacenters

Training and/or inference 
AI and/or large scale models



General methodology for
estimating the amount of hardware and energy consumption of AI models 

number of
servers

Hardware type

compute performance (FLOPs), 
network/memory bandwidth

Duration
Harware usage Hardware type/usage

TDP or power, %idle, %dynamic

FLOP

#params, #data, #iteration, #users, 

#queires, length intput/output

Energy 
consumption

Remark: Various application methodologies with different hypotheses, 
                mainly due to data scarcity



E-waste challenges of generative artificial intelligence (Wang et al, 2024)

Training compute:                    FLOPs
• N: number of non-embedding parameters 
•    : total number of tokens used for training
• d: training duration in seconds

Inference compute per second:                 FLOPs 
•    : number of tokens demand per second

GPU compute performance,
hardware usage

Server amount 
prediction

Training/Inference
computational power 

demand

#models, #parameters
Training: #data, duration

Inference: #users, #tokens 

e-waste amount
Servers lifespan

distribution

(Kaplan, 2020)

Restricted to LLM



E-waste challenges of generative artificial intelligence (Wang et al, 2024)



• an independent research and 
analysis company

• restricted access to model
• many hypotheses based on GPT-3 

The Inference Cost Of Search Disruption – Large Language Model Cost 
Analysis (Semianalysis, 2023)

number of
servers

FLOP

#params, #data, #iteration, #users, 

#queires, length intput/output

Hardware type

compute performance (FLOPs), 
network/memory bandwidth

Duration
Harware usage



The Inference Cost Of Search Disruption – Large Language Model Cost 
Analysis (Semianalysis, 2023)



The growing energy footprint of artificial intelligence (de Vries, 2023)

“Alphabet’s chairman indicated in February 2023 that interacting with an LLM could “likely cost 10 times more than a standard keyword 
search.6" 

● a standard Google search reportedly uses 0.3 Wh of electricity  (Remark: data from 2009)
● → 3 Wh per LLM interaction

https://www.cell.com/joule/fulltext/S2542-4351(23)00365-3?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS2542435123003653%3Fshowall%3Dtrue#


The growing energy footprint of artificial intelligence (de Vries, 2023)

#servers sold from 
MarketWatch



• Several estimations of large-scale AI impacts
• different functional units, perimeters, hypotheses and types of impacts
• but common restriction on compute servers (ignoring other IT and non-IT 

equipment)
• no consideration of indirect impacts 

• Large variability of results and lack of uncertainties analysis

• Consensus on growth of environmental impacts 

• Both academic papers and media coverage should be more careful on 
data

• when were data produced and by whom

Discussion
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Structural and systemic transformation: changes in consumption, production and socio-economic 
structures, accelerating flows (logistics, people, financial, high-frequency trading, etc.)
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No Effects from interaction with society

Non-IT infrastructure: factories, power plants, other networks, R&D, marketing, training, 
etc.

INFERENCE Acquisition, processing, 
storage of DATA

TRAINING

Data transfer

Datacenters 
(storage and compute 
servers) Computers 

for 
developers

Data acquisition terminals:
smartphones,  sensors, IoT 
…

Datacenters 

Computers 
for 

developers

Datacenters 

Terminals: 
computers, smartphones,  
robots, IoT …

IT infrastructure: terminals, networks, datacenters

Effects from usage and interactions with the society: optimization, substitution, 
induced/rebound effects, obsolescence, stacking



Direct impacts

Carbon footprint

InferenceTraining

Data centerNetwork equipment

UsageProduction

What is presently assessed

End of life

User equipment

Data acquisition, processing  
& storage

Resource depletion Water consumption …

Indirect impacts
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Limits

- No strong correlation between parameters/flops and energy consumption (Henderson 
et al., 2020)

- Additional information necessary
- latency, % usage of hardware/peak-to-average ratio, #users, #queries, length input/output
- precision in floating-point arithmetic

- No standard methodology → differences between tools
- Only GPUs/CPUs/RAMs or Full Servers
- Static or Dynamic consumptions, 
- Only IT equipment

- use of PUE (with its limits), or infrastructure consumption (Luccioni et al., 2023)



Estimating trends on global environmental impacts of AI

Methodologies

● Present estimations
○ Bottom-up approaches

■ Aggregation of data on individual models or HPC nodes (e.g. Desroches et al. 2025) 
○ Top-down approaches

■ Number of hardware from shipments, market shares or total number of computation 
needed (e.g. IEA 2024, de Vries 2024)   

○ A mix of bottom-up and top-down (ex: Wijnhoven et al., Schneider Electric, 2024)
● Future scenarios by varying several factors

○ datacenters planned, hardware efficiency, increases in model size and complexity adoption of 
generative AI,  market demand, etc.



Biases of impact studies (Rasoldier et al., 2022)

Perimeter

● life cycle not taken into account: (Ligozat et al., 2021) for AI
● indirect (2nd and 3rd order) not taken into account: 5G

Uncertainties

● model choices, access and quality of data

Hypotheses

● comparison to what reference scenario?

Disconnection from global scenarios

● minimal benefits + poorly managed uncertainties
● incompatibility between measures
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Conclusion

● More and and more evaluations of AI environmental impacts; fast evolving 
domain 
○ But incomplete and not always fully transparent evaluations
○ Difficult access to data

● All trends: Important  growth of every impact



“Alphabet’s chairman indicated in February 2023 that interacting with an LLM could “likely cost 10 times more than a standard keyword 
search.6" 

● a standard Google search reportedly uses 0.3 Wh of electricity
● → 3 Wh per LLM interaction

2023

• 100,000 nvidia AI servers (A100 and H100) sold 
• full capacity: 650–1,020 MW or 5.7–8.9 TWh annually (vs 205 TWh 

for data centers)

2027

• 1.5 million servers
• 9.75–15.3 GW power demand or 85.4–134.0 TWh annually

(de Vries, 2023) The growing energy footprint of artificial intelligence

https://www.cell.com/joule/fulltext/S2542-4351(23)00365-3?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS2542435123003653%3Fshowall%3Dtrue#

