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Context and introduction

e Increasing investments and use of machine learning (ML)

e Al present in most prospective scenarios to achieve carbon neutrality (Bugeau et al.,
2024)

e Many estimations of energy consumption of Al in general and of large ML models
o Few estimations of environmental impacts of Al models (Luccioni et al, 2023; Berthelot et al, 2024;
Morand et al, 2024; Desroches et al, 2025; Morrison et al 2025) and sector

e In this presentation
o  We review large-scale estimations of Al sector
o  We discuss limits of current estimations



Large scale estimations of Al impacts
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LLM Cost Analysis (Semianalysis, 2023)

ChatGPT inference: ~3,600 servers
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Figure 1. Estimated energy consumption per request for various Al-powered systems compared to a standard Google search
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Different perimeters
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General methodology for
estimating the amount of hardware and energy consumption of Al models

/

FLOP
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Remark: Various application methodologies with different hypotheses,

mainly due to data scarcity



E-waste challenges of generative artificial intelligence (Wang et al, 2024)
Restricted to LLM

Training compute: ~ 6NT;/d FLOPs

.. . N: number of non-embedding parameters
#models, #parameters Trammg/lnference . Ty total number of tokens used for training

Training: #data, duration computational power . d: training duration in seconds

Inference: r ken
erence: #users, #tokens demand Inference compute per second:~ 2N T} FLOPs
. T;: number of tokens demand per second

(Kaplan, 2020)

GPU compute performance, Server amount
hardware usage prediction

Servers lifespan
distribution e-waste amount




E-waste challenges of generative artificial intelligence (Wang et al, 2024)

b E-waste generation per quarter with no circular or other interventions

1.0
— Aggressive LLM application scenario I(?gh;m‘; 15 pro
0.9 Eigai " g
— Moderate LLM application scenario
0.8 | — Conservative LLM application scenario gosslat i w108 billion
— : : " ; r : -1
— Limited expansion of GAl server capacity scenario ¥ units yr
07 .
= == Uncertainty zone
2
o 0.6
@
s
5 05 - 15Mtyr! = 8.0 bllll_?n
Re) 10 b 2023: 2.55 kt yr' units yr
% 0.4 08 |
() 0.6
2 0‘4 -
= PR 4.3 bill
0 0.8Mtyr' = -2 0IUCN
58335555553305835 ¥ units yr™
021 QRRRN~&E&NRNARRIR
0.1+ / 0.4 Mt yr—1 - 2.1 billion
| units yr™'
[ |
H I ; l : ' World population
B85 8E 588 S8 a8 s EE3o88558358883505! 2030 (Froa UNJ 815 billion
SRRSNSTRANIICRRRAIIIIRRERRRRELRNRY A

Quarter




The Inference Cost Of Search Disruption — Large Language Model Cost
Analysis (Semianalysis, 2023

OUR MODEL IS BUILT FROM THE GROUND UP ON A PER-INFERENCE BASIS,
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The Inference Cost Of Search Disruption — Large Language Model Cost
Analysis (Semianalysis, 2023)
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The growing energy footprint of artificial intelligence (de Vries, 2023)
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“Alphabet’s chairman indicated in February 2023 that interacting with an LLM could “likely cost 10 times more than a standard keyword

search.2"
e astandard Google search reportedly uses 0.3 Wh of electricity (Remark: data from 2009)

e — 3 Wh per LLM interaction


https://www.cell.com/joule/fulltext/S2542-4351(23)00365-3?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS2542435123003653%3Fshowall%3Dtrue#
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Discussion

- Several estimations of large-scale Al impacts
- different functional units, perimeters, hypotheses and types of impacts
- but common restriction on compute servers (ignoring other IT and non-IT
equipment)
« no consideration of indirect impacts
- Large variability of results and lack of uncertainties analysis

- Consensus on growth of environmental impacts

- Both academic papers and media coverage should be more careful on

data
- when were data produced and by whom
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No Effects from interaction with society

Structural and systemic transformation: changes in consumption, production and socio-economic
structures, accelerating flows (logistics, people, financial, high-frequency trading, etc.)

Effects from usage and interactions with the society: optimization, substitution,
induced/rebound effects, obsolescence, stacking

Non-IT infrastructure: factories, power plants, other networks, R&D, marketing, training,
etc.

IT infrastructure: terminals, networks, datacenters
Data transfer
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Limits

- No strong correlation between parameters/flops and energy consumption (Henderson
et al., 2020)

- Additional information necessary
- latency, % usage of hardware/peak-to-average ratio, #users, #queries, length input/output

- precision in floating-point arithmetic

- No standard methodology — differences between tools
- Only GPUs/CPUs/RAMs or Full Servers
- Static or Dynamic consumptions,

- Only IT equipment
- use of PUE (with its limits), or infrastructure consumption (Luccioni et al., 2023)



Estimating trends on global environmental impacts of Al

Methodologies

e Present estimations
o Bottom-up approaches
m Aggregation of data on individual models or HPC nodes (e.g. Desroches et al. 2025)
o Top-down approaches
m  Number of hardware from shipments, market shares or total number of computation
needed (e.g. IEA 2024, de Vries 2024)
o A mix of bottom-up and top-down (ex: Wijnhoven et al., Schneider Electric, 2024)

e Future scenarios by varying several factors

o datacenters planned, hardware efficiency, increases in model size and complexity adoption of
generative Al, market demand, etc.



Biases of impact studies (Rasoldier et al., 2022)

Perimeter

e life cycle not taken into account: (Ligozat et al., 2021) for Al
e indirect (2nd and 3rd order) not taken into account: 5G

Uncertainties

e model choices, access and quality of data
Hypotheses

e comparison to what reference scenario?
Disconnection from global scenarios

e minimal benefits + poorly managed uncertainties
e incompatibility between measures
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Conclusion

e More and and more evaluations of Al environmental impacts; fast evolving
domain
o But incomplete and not always fully transparent evaluations
o Difficult access to data

e All trends: Important growth of every impact



(de Vries, 2023) The growing energy footprint of artificial intelligence

2023

100,000 nvidia Al servers (A100 and H100) sold
full capacity: 650-1,020 MW or 5.7-8.9 TWh annually (vs 205 TWh
for data centers)

2027

1.5 million servers
9.75-15.3 GW power demand or 85.4-134.0 TWh annually

“Alphabet’s chairman indicated in February 2023 that interacting with an LLM could “likely cost 10 times more than a standard keyword
search.2"

e astandard Google search reportedly uses 0.3 Wh of electricity

e — 3 Wh per LLM interaction
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